Release of [3H]gamma-aminobutyric acid from glial (Müller) cells of the rat retina: effects of K+, veratridine, and ethylenediamine.

نویسنده

  • P V Sarthy
چکیده

In several neural systems, glial cells appear to take up and release gamma-aminobutyric acid (GABA) upon depolarization. We have studied the release of [3H]GABA from Müller (glial) cells in the rat retina by a double isotope-labeling technique in which Müller cells are preloaded with 3H-GABA while a population of neurons is prelabeled with [14C]glycine. By autoradiography, we have confirmed that [3H]GABA is taken up by the radially oriented Müller cells, whereas [3H]glycine is accumulated by a subset of amacrine cells (neurons). Using the double-labeling procedure, we have examined the effects of two depolarizing agents, high K+ and veratridine, and the GABA mimetic, ethylenediamine, on transmitter release from glial cells and neurons simultaneously. We found the following. (1) Depolarization with 56 mM K+ released both [3H]GABA and [14C]glycine. About 70 to 80% of this release was blocked in Ca2+-free medium. (2) Veratridine (10 microM) also released both of the transmitters. This release was strongly inhibited by 100 nM tetrodotoxin or 1mM procaine. Under Ca2+-free conditions, less than 20% isotope release was observed. (3) Ethylenediamine released [3H]GABA readily, whereas little [14C]glycine release was observed. Removal of Ca2+ had no significant effect on transmitter release. Furthermore, in Na+-free medium ethylenediamine failed to induce [3H] GABA or [14C]glycine release. These results suggest that high K+ and veratridine release [3H]GABA from Müller cells by a Ca2+-dependent process. Ethylenediamine, on the other hand, appears to induce [3H]GABA release by a Ca2+-independent, carrier-mediated exchange mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar Giant Synaptosomes: a Model to Study Basal and Stimulated Release of [3H]gamma-Aminobutyric Acid

Background: Neurotransmitter release is an essential link in cell communication of the nervous system. Many investigations have focused on gamma amino butyric acid (GABA)-ergic neurotransmission, because it has been implicated in the pathophysiology of several central nervous system disorders. To bypass complications related to homo- and heterosynaptic modulation and to avoid indirect interpret...

متن کامل

Characterization of GABAergic neurons in cerebellar primary cultures and selective neurotoxic effects of a serum fraction.

The morphological and functional differentiation of GABAergic interneurons present in cerebellar primary cultures has been examined by means of [3H]gamma-aminobutyric acid (GABA) autoradiography and [3H]GABA depolarization-evoked release. At 2 days in vitro these neurons showed scarce accumulation of radioactivity and no Ca2+-dependent K+-evoked or veratridine-induced release of [3H]GABA. At 5 ...

متن کامل

Non-cholinergic effects of paraoxon on [3h]-GABA release from rat cerebellar giant synaptosomes

Diethyl p-nitrophenyl phosphate (paraoxon) is the active toxic metabolite of parathion. Some evidences indicate that OPs affect the GABA system via noncholinergic mechanisms. The purpose of this study was to investigate the effects of paraoxon on K+-evoked [3H]-GABA release from cerebellar synaptosomes. Adult male rats (200 ± 30 g; 3-4 months old) were sacrificed by decapitation and the cerebel...

متن کامل

Non-cholinergic effects of paraoxon on [3h]-GABA release from rat cerebellar giant synaptosomes

Diethyl p-nitrophenyl phosphate (paraoxon) is the active toxic metabolite of parathion. Some evidences indicate that OPs affect the GABA system via noncholinergic mechanisms. The purpose of this study was to investigate the effects of paraoxon on K+-evoked [3H]-GABA release from cerebellar synaptosomes. Adult male rats (200 ± 30 g; 3-4 months old) were sacrificed by decapitation and the cerebel...

متن کامل

Modification of tritiated gamma-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures.

The role of brain neurotransmitter transport processes in rabies virus infection of neurons was examined. The uptake and release of gamma-amino-n-butyric acid (GABA) in rabies virus-infected embryonic rat cortical neurons was assayed using tritiated ligands. A 45% reduction of [3H]GABA uptake was observed 3 days post-infection, when a maximum level of infectious particle release occurs. At this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 3 12  شماره 

صفحات  -

تاریخ انتشار 1983